
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

And Do Dilly Dally On The Way

QHow do I instigate some kind
of delay in my application?

AIf you are using Delphi 2,
there is a Win32 API called

Sleep that takes one parameter: a
number of milliseconds. The
trouble with Sleep is that if it is
called from the main program
thread, the program effectively
hangs for the duration of the delay.
If you try and move the form, it
won’t (until the delay is over). Like-
wise, if you obscure the program,
and then uncover it again, it won’t
repaint itself until the delay is up.

The other two approaches are
applicable to Delphi 1 and 2, and
initially suffer from the same prob-
lem as Sleep, but at least it can be
overcome with these.

Listings 1 and 2 show the two
approaches. The comments in the
two listings show how to let your
program still function during the
delay. Note that one of these Delay
routines is called in Listing 3.

Changing Locations

QWhen my programs start up,
their forms are always in the

same location on the desktop, and
the same size, as they are at design
time. When I run NotePad, its
location varies, as does its size. Is
the this something we can easily
mimic?

AIndeed. The form’s Position
property defaults to

poDesigned, which tells it to use the
design time location and size. A
value of poScreenCenter ensures it
is positioned in the centre of the
screen, whereas poDefaultPosOnly
means that its position will vary
but its size will be the same,

poDefaultSizeOnly means the size
will be vary but the position will be
fixed and lastly poDefault matches
the behaviour seen with NotePad
where the size and position are
variable.

Incidentally, setting BorderStyle
to bsDialog in Delphi 2 will stop this
varying placement.

Tacky Termination

QIf I decide to terminate my
program (using Application.

Terminate) in my main form’s
OnCreate or OnShow event, the pro-
gram does close, but I get a flicker
of the main form on the screen
before it goes. How do I stop this?

AIn Delphi 1, terminate with
Halt instead. This isn’t as

good as Application.Terminate but
exit routines will get called. In
Delphi 2, terminate with whatever
you like, but set the new Delphi 2

Application.ShowMainForm property
to False first. It seems this property
was added so that OLE automation
server applications could start
without showing their main forms
if desired when started by an OLE
automation controller.

Changing The
Default Exception Handler

QWhen I get an exception in
my program, firstly the

debugger tells me about it (I know
I can turn this off with the Break on
Exception option) and then my
program reports it. I don’t like the
way it reports it, so how do I
change it?

AWhen the debugger tells you
about an exception that’s

happened in your program it is
trying to be helpful, allowing you to
debug the problem. You can cer-
tainly turn this off by un-checking

procedure Delay(MSec: Longint);
const MSecPerDay = 24 * 60 * 60 * 1000;
var OldTime: TDateTime;
begin
 OldTime := Time;
 repeat
 { To resolve the hung program, use the following commented out lines
 Application.ProcessMessages;
 if Application.Terminated then
 Break }
 until Time >= OldTime + MSec / MSecPerDay;
end;

➤ Listing 1

procedure Delay(MSec: Longint);
var OldTime: Longint;
begin
 OldTime := GetTickCount;
 repeat
 { To resolve the hung program, use the following commented out lines
 Application.ProcessMessages;
 if Application.Terminated then
 Break }
 until GetTickCount >= OldTime + MSec;
end;

➤ Listing 2

54 The Delphi Magazine Issue 14

the option you mention on the
Preferences page of Options |
Environment (Delphi 1) or Tools |
Options (Delphi 2).

To change the default exception
handler, you must write an event
handler for the Application
object’s OnException event. The
trouble with this is that the
Application object does not appear
in the Object Inspector: it is only
available at run time. This means
that the event handler must be set
up by hand. To do this requires
three steps, as performed by the
Object Inspector when it makes
event handlers.

First, declare an appropriate
method in a form class. In fact it can
be in any class, but form classes
are conveniently being manufac-
tured by the environment anyway.
To make the method “appropriate”
it needs the right interface, which
is described in the help for the
event type. Take as an example the
OnDestroy event of a form. Find and
select it on the Events page of the
Object Inspector and then press F1.
The help says it’s a property of
type TNotifyEvent. Click on the help
link for the type definition, which
describes appropriate event han-
dlers as procedures taking a Sender
parameter of type TObject, where
the procedures are defined inside
an object type: ie they are methods.

If you look up OnException, it is of
type TExceptionEvent and appropri-
ate event handlers take two pa-
rameters (Sender and the exception
to handle). Incidentally, when you
type in an appropriate method
declaration, make sure it’s in the
private or public section of the
form class, not the section that
Delphi maintains: you’ll get into
trouble if you use that bit.

Secondly, set up the implementa-
tion. This means copying the
declaration into the form unit’s
implementation section and preced-
ing the method name with the class
name and a dot. Now follow it with
begin and end and a semicolon. If
this all sounds confusing, make an
OnCreate handler for your form by
double-clicking on the form’s client
area and examine the declaration
and implementation you can see
placed in the editor.

Thirdly, associate the method
with the event. If you made a form
OnCreate handler as suggested
above, look at the Events page of
the Object Inspector for the form.
The name of the event handler
method is listed next to the event.
It’s this that turns the method into
an event handler. Without this, it is
just a method. Now, given that the
online help page we looked at ear-
lier said that events are really prop-
erties, and we often change
property values at run-time with
assignments, it follows that we can
also associate our custom method
with Application.OnException with
an assignment. Where we place the
assignment depends on how long
we want the event handler active,
but this will often happen in the
main form’s OnCreate handler to
make it active as long as possible.

These three steps reproduce
what the Object Inspector does
when it make an event handler. All

that we’ve left to do now is put
code inside the method we have
made. Listing 3 shows a sample
OnException handler: note it uses
MessageDlg to tell the user about
the error (the original one used
ShowMessage). Also it indicates a
General Protection Fault or Access
Violation by temporarily writing
Ouch! on the main form’s caption
bar. The EXCEPTS.DPR program on
the disk shows the handler being
used to trap three otherwise un-
handled exceptions. Listing 4
shows the three event handlers
that generate the errors.

Can’t Re-Compile The VCL

QDelphi 1 allows me to add the
VCL source directory onto

my unit search path in the Directo-
ries/Conditionals page of the
Project Options dialog. Having
done this, a simple recompilation
is necessary to then allow me to go

type
 TForm1 = class(TForm)
 ...
 procedure FormCreate(Sender: TObject);
 private
 procedure DoException(Sender: TObject; E: Exception);
 ...
 end;
...
procedure TForm1.DoException(Sender: TObject; E: Exception);
var S: String;
begin
{$ifdef Win32}
 if E is EAccessViolation then begin
{$else}
 if E is EGPFault then begin
{$endif}
 S := Caption;
 Caption := ’Ouch!’;
 Delay(750);
 Caption := S
 end else
 MessageDlg(E.ClassName + ’: ’ + E.Message, mtError, [mbCancel], 0)
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnException := DoException
end;

➤ Listing 3

procedure TForm1.Button1Click(Sender: TObject);
var P: PByte;
begin
 P^ := 0 {Generate a GPF or AV }
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 StrToInt(’A’) { A is not a valid integer}
end;

procedure TForm1.Button3Click(Sender: TObject);
begin
 { Invalid typecast }
 (Sender as TListBox).ItemIndex := 0;
end;

➤ Listing 4

October 1996 The Delphi Magazine 55

procedure GetIDsOfNames(Dispatch: IDispatch; Names: PChar;
 NameCount: Integer; DispIDs: PDispIDList);
var
 ...
 Res: HResult;
begin
 Res := Dispatch.GetIDsOfNames(GUID_NULL, @NameRefs, NameCount,
 LOCALE_SYSTEM_DEFAULT, DispIDs);
 if Res = DISP_E_UNKNOWNNAME then
 raise EOleError.CreateResFmt(SNoMethod, [Names])
 else
 OleCheck(Res);
end;

➤ Listing 6

procedure GetIDsOfNames(Dispatch: IDispatch; Names: PChar;
 NameCount: Integer; DispIDs: PDispIDList);
var
 ...
begin
 ...
 if Dispatch.GetIDsOfNames(GUID_NULL, @NameRefs, NameCount,
 LOCALE_SYSTEM_DEFAULT, DispIDs) <> 0 then
 raise EOleError.CreateResFmt(SNoMethod, [Names]);
end;

➤ Listing 5

stepping into the VCL source. I
tried this with Delphi 2 and didn’t
get very far. Even with the correct
directory in the search path box,
re-compiling or rebuilding does not
go though the VCL source files.
What’s changed?

AUnit caching has been
added, and it acts in a special

way for the VCL source files. Basi-
cally, after you first compile a
Delphi project in the IDE, the VCL
units are loaded into memory. Each
successive compilation makes use
of these cached units. Unfortu-
nately, despite adding the source
path to the unit search path, the
compiler refuses to replace the
VCL units in the cache. After set-
ting the search path accordingly,
you must close Delphi 2, saving the
changes to the project, and then
restart it and reload the project.
The rebuild or recompilation will
now work.

OLE Method Lost

QI am writing an OLE automat-
ion controller where I re-

peatedly refer to the OLE server’s
properties from within a TTimer’s
OnTimer event handler. When the
application is running under
Windows 95 and I right click on the
server’s icon in the task bar, I get
an exception each time my timer
ticks, saying that the method or
property I referred to does not
exist. Why is this, when I know full
well that it does?

AUnder those circumstances,
OLE2 does yield an error, but

the one reported has an incorrect
message. Whenever you call some-
thing from an OLE automation
server, the server is interrogated
for the dispatch id number of the
properties or methods you refer to.
The variant you use to represent
the connection to the server holds
an IDispatch object and that
object’s GetIDsOfNames method is
called. When you refer to some-
thing that is not implemented in
the server, that routine returns
a DISP_E_UNKNOWNNAME error (num-
ber $80020006). When the task bar
right click menu is up, that method

returns an error with the snappy
little name of

 RPC_E_CANTCALLOUT_ININPUTSYNCCALL

(number $8001010D). This indicates
that whilst the menu is up,
Windows won’t allow certain
operations and so OLE calls are
forbidden.

OLE does have support for gen-
erating error messages when an
error value arises (you can pass
the value to OleCheck: if it is
between $7FFFFFFF and $FFFFFFFF
an exception gets generated with
the error message).

The OLE error that is given when
you call an invalid automation
property or method is Unknown
name. Because this isn’t very de-
scriptive, the code in the OLEAuto
unit generates a custom exception,
with the message Method xxxx is
not supported by OLE object.
However this message is used
regardless of the error number
returned by GetIDsOfNames. The re-
turn value should be checked, and
the custom message should only
be used when an error of
DISP_E_UNKNOWNNAME is detected.

To fix this problem, you can
modify the OLEAuto unit, re-compile
it and copy the unit into Delphi’s
LIB directory. The relevant routine
to modify in the unit is the

GetIDsOfNames procedure (search
for procedure GetIDsOfNames),
where you can see Dispatch.GetID-
sOfNames being called at the end.
Notice that the only check is
against zero: if the return value is
not zero, it generates the custom
EOleError exception with a mes-
sage as designated by the
SNoMethod constant. Listing 5 is the
code as it stands, Listing 6 is the
modified version that works prop-
erly. Re-running the program with
this change in place causes the
error to be the more correct An
outgoing call cannot be made since
the application is dispatching an
input-synchronous call.

Note that to get this new VCL unit
compiled into your program
without problem, refer to the
previous Clinic item.

Credits Addendum
In February (Issue 6) I listed all the
known Delphi 1 hidden credit/gang
screens. Delphi 2 removes the
colourful Alt+AND picture of Anders
Hejlsberg, but another one has
come to light. Invoke the BDE API
help file and make sure you are
looking at the Index, then choose
overriding defaults and push the
little button at the bottom left of
the text. Now choose credits. This
gives a list of those responsible for
the BDE.

56 The Delphi Magazine Issue 14

	And Do Dilly Dally On The Way
	Changing Locations
	Tacky Termination
	Changing The Default Exception Handler
	Can’t Re-Compile The VCL
	OLE Method Lost
	Credits Addendum

